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The field dependence of the vortex core size ξ(B) is incorporated in the London model, in order to
describe reversible magnetization M(B, T ) for a number of materials with large Ginzburg-Landau
parameter κ. The dependence ξ(B) is directly related to deviations in M(ln B) from linear behavior
prescribed by the standard London model. A simple method to extract ξ(B) from the magnetization
data is proposed. For most materials examined, ξ(B) so obtained decreases with increasing field
and is in qualitative agreement both with behavior extracted from µSR and small angle neutron
scattering data and with that predicted theoretically.

PACS numbers: PACS: 74.50.+r, 74.78.Fk, 74.78.-w

I. INTRODUCTION

A. On the London model

Despite its simplicity, the London approach is a pow-
erful tool in describing magnetic properties of the mixed
state. In fact, short of the full-blown microscopic theory,
it is the only method available for low temperatures. The
approach is based on the London equation:

h− λ2∇2h = φ0

∑
n

δ(r − rn) , (1)

where h(r) is the magnetic field, λ is the penetration
depth (a temperature dependent constant in uniform
samples), φ0 is the flux quantum, and rn are vortex posi-
tions. For simplicity, the equation is written for isotropic
materials. This approach fails at distances of the or-
der of the coherence length ξ; still, in materials with
κ = λ/ξ À 1, there is a broad domain of intermedi-
ate fields φ0/λ2 ¿ H ¿ φ0/ξ2 where the complexity
of the vortex core contributions to the total energy can
be disregarded and the London approach suffices for the
description of macroscopic magnetic properties.

As far as the equilibrium properties of the flux-line
lattice are concerned, the pivotal point is the expression
for the free energy

F̃ = F − B2

8π
=

φ0B

32π2λ2
ln

eηHc2

B
. (2)

The right-hand side here is the interaction energy of vor-
tices forming a periodic lattice, B is the magnetic in-
duction. This expression is obtained by transforming

the sum of pair-wise interactions of vortices to a sum
over the reciprocal lattice, see e.g., Ref. 1. The sum (or
the integral over the reciprocal plane k) is logarithmi-
cally divergent so that a cutoff at k ∼ 1/ξ ∼ 1/ρc is
needed (ρc is the size of the vortex core). This yields
ln(φ0/2πξ2B). The parameter η of the order unity is
commonly introduced to account for uncertainty of the
cutoff (along with the uncertainty in the lower limit of
the integral of the order of inverse intervortex spacing
∼

√
B/φ0); e = 2.718... appears in Eq.(2) for conve-

nience of not having it in the expression for the magneti-
zation. Again, the energy in the form of Eq.(2) holds in
intermediate fields Hc1 ¿ H ¿ Hc2, the domain existing
only in materials with large Ginzburg-Landau parameter
κ (Hc1 and Hc2 are the lower and upper critical fields).
Hence, although the length ξ (or the core size ρc) does not
appear in the London equation (1), it enters the energy
expression (2) through the cutoff and therefore affects,
presumably weakly, macroscopic quantities such as the
magnetization and other properties of the mixed state.

Significant effort has recently been put in studies of
the vortex core size ρc; see the review by Sonier and
references therein.2 Notably, whatever definition of ρc is
adopted, the low temperature ρc (extracted from the µSR
data) decreases with increasing applied magnetic field in
a number of materials such as NbSe2, V3Si, LuNi2B2C,
YBa2Cu3O7−δ, and CeRu2; their physical characteris-
tics have little to do with one other, except that all of
them have a large GL parameter κ = λ/ξ and exhibit
large regions of reversible magnetic behavior. One can
add to this list a heavy fermion compound CeCoIn5, for
which the interpretation of small angle neutron scattering
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data (SANS) requires a similar behavior of the coherence
length.3 The dependencies ρc(B) for all tested materials
are qualitatively similar: when the field increases toward
Hc2, ρc(B) decreases roughly as 1/

√
B. In other words,

in large fields ρc is roughly proportional to the intervor-
tex spacing.

A few qualitative reasons for the core shrinking with
increasing field have been discussed in literature; see the
review 2. Perhaps the simplest defines the core bound-
ary as a position where the divergent London current
cφ0/8π2λ2r of an isolated vortex reaches the depairing
value, i.e., as r ∼ ξ. In the mixed state, neighboring
vortices suppress the circulating current by contributing
currents of the opposite direction. Hence, the depairing
value is reached at a shorter distance from the vortex cen-
ter, and consequently ρc should decrease with increasing
field.

The vortex core size, ρc, is of the order of the coher-
ence length ξ and, in fact, it is often identified with ξ(T ).
Strictly speaking, the latter is defined only at the up-
per critical field: Hc2 (T ) = φ0/2πξ2. Nevertheless the
length ξ is used to describe the mixed state at fields not
necessarily close to Hc2. The question of possible field
dependence of ξ has been considered by one of us for
the isotropic case.4 It was shown that in the dirty limit
one can use ξ = (φ0/2πHc2)1/2 at any field within the
mixed phase; the same is true near the critical tempera-
ture Tc for any scattering strength. However, in general,
when the field is reduced below Hc2, the value of ξ(B)
increases, an effect that is profound in clean materials at
low temperatures. Calculations of Ref. 5 are in accord
with the µSR results cited above. In the following, we
denote as ξc2 the value of ξ(B) at B = Hc2 to stress that
in general ξ(B) 6= ξc2 for B < Hc2.

Another common theoretical definition of ρc is based
on the slope of the order parameter ∆(r) at the vor-
tex axis r = 0, normalized either to its value ∆(∞)
far from the single vortex or to the value of ∆(a/2)
half-way to the nearest neighbor in the mixed state:
1/ρc = ∆′(0)/∆(a/2). Recent microscopic calculations
of this quantity by Miranović et al. showed a variety of
field dependent behaviors of ρc at low temperatures de-
pending on the scattering strength.6 In particular, this
work suggests that ρc(B) may have a minimum which,
however, has not been seen in µSR experiments. There
are many different ways to define ρc customized for dif-
ferent experimental or theoretical needs (see, e.g., the
discussion in Ref. 5). For the purpose of this paper, these
differences are irrelevant and we use the terms ρc(T, B)
and ξ(T, B) as the same.

In the following we provide experimental data for the
field dependence of the reversible magnetization for a
single crystal YNi2B2C in a broad temperature region
to demonstrate the known fact: the data cannot be de-
scribed by the standard London model. We then derive a
closed form expression for the cutoff ξ(B) needed to rep-
resent correctly the data M(B) with the help of the Lon-
don model. We show that ξ(B) so chosen is qualitatively

consistent with the field dependence of ξ recorded by µSR
and discussed theoretically. Finally, we demonstrate that
the new model generates a consistent description of the
magnetization data for a number of unrelated materials
with large κ. The goal of this paper is to demonstrate
that ξ(B) can be in principle extracted from the magne-
tization data, a less demanding experimental procedure
as compared to µSR or SANS. Within our approach, the
London penetration depth is field independent, whereas
the field dependence of ξ alone suffices to explain the
data.

II. EXPERIMENTAL ASPECTS

A. Sample preparation

Single crystals of YNi2B2C, LuNi2B2C, and
Lu(Ni1−xCox)2B2C were grown out of Ni2B or
(Ni1−xCox)2B flux in a manner similar to the growth of
other borocarbide crystals. As discussed in Ref. 7, Co
doping serves as a convenient tool to move from clean to
dirty limit.

NbSe2 crystals were grown via iodine vapor transport
technique (REF) and had Tc ≈ 7.1 K and the residual
resistivity ratio RRR ≈ 40.

MgB2 single crystals of submillimeter sizes were grown
by a high pressure technique as described in Ref. 8.

A single crystal of V3Si was grown using a Bridgeman
method, in which a floating zone was created by rf in-
duction heating. The samples for investigation were cut
by a wire saw and oriented using Laue method. Samples
had typical dimension of 2× 2× 4 mm.

B. Magnetic measurements

The magnetization measurements were performed by
using several Quantum Design MPMS systems. In a typi-
cal experiment, a full M (H) loop was recorded and only
its reversible part, above the irreversibility field, Hirr,
was used for the analysis. Hirr was determined as a field
where ascending and descending branches coincided or
were sufficiently close (a weak hysteresis).

The procedure is demonstrated in Fig. 1. The main
frame shows raw data with clear range of reversible be-
havior above Hirr indicated by an arrow. The left in-
set shows the expanded portion of the raw data in the
vicinity of Hc2. A small paramagnetic background (from
the sample, the sample holder and perhaps residual flux
on the crystal surface) is clearly seen as a linear-in-H
contribution. After this contribution is subtracted, we
obtain the superconducting diamagnetic signal shown in
the right inset. The Hc2 is indicated by an arrow. Su-
perconducting transition temperature was measured in a
small (H = 10 Oe) applied field. In large fields of our in-
terest, demagnetization effects are weak; in the following
we do not distinguish between the applied field H and
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FIG. 1: (color online) An example of M(H) for YNi2B2C
at T = 9K. The main plot shows both up- and down-field
scans and the irreversibility field. The upper inset illustrtes
how the normal state paramagnetic contribution is subtracted
with the result shown in the lower inset. The upper critical
fields Hc2 is indicated by an arrow.

the induction B. As explained below, we do not need
the sample volume in our analysis so that we can use
on equal footing field dependencies of the magnetic mo-
ment (in emu) or of the magnetization (in G); we use the
notation M for both quantities.

III. MODIFIED LONDON MODEL

The standard London energy (2) gives an equilibrium
magnetization that is linear in ln B in intermediate fields:

M = −∂F̃

∂B
=

φ0

32π2λ2
ln

η Hc2

B
. (3)

Hence, the standard London model requires a plot of M
versus lnB to be a straight line.

A. YNi2B2C

Fig. 2 shows reversible magnetization for a single crys-
tal YNi2B2C in fields parallel to the c axis at 2, 5, 9, and
12 K. Clearly, the deviations from the London prediction
increase with decreasing T ; at low temperatures M(lnB)
is far from being linear.

We note that in many materials with κ À 1, it is
difficult to distinguish between a narrow Abrikosov do-
main near Hc2 with M ∝ (Hc2−B) and a broad London
domain where the magnetization depends on the field
in a slow, nearly logarithmic manner. For this reason
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FIG. 2: (color online) The magnetization M(ln B) for
YNi2B2C at T = 2, 5, 9, and 12K. The upper critical fields
Hc2 are the positions of kinks in M(ln B) not shown in the
figure. The solid curves are obtained by fitting the data to
Eq. (4) with the fitting parameters M0 (shown in the inset),
η, and α.

the Abrikosov part of M(B) is sometimes discarded al-
together; this amounts to setting η = 1 in Eq. (3).9 Of
course, this cannot be done for materials with κ ∼ 1. We
will follow this simplification in our analysis and indicate
the cases when this cannot be done.

To formally account for deviations of the data from
the behavior prescribed by the standard London formula,
we add to expression (3) two additional terms: const/B
(to correct for the low field behavior) and const·B (to
account for the high field curvature). These are, per-
haps, the simplest possible modifications one can think
about.10 A restriction upon the constants is provided by
a requirement that M(Hc2) = 0. Hence

M = −M0

[
ln

ηHc2

B
+ α

Hc2

B
− (ln η + α)

B

Hc2

]
; (4)

where M0 = φ0/32π2λ2. Certainly, the form (4) is not
the only possiblity for representing the available data.
Other forms were suggested in the literature11–14 based
on different theories and assumptions. We stress that
the expression (4) is just an empirical formula to rep-
resent the data. We choose it because of its simplicity,
and because - as is demonstrated below - it is sufficiently
flexible to represent the magnetization data in a host of
materials with very different physical properties.

The solid lines in Fig. 2 are the data fits to Eq. (4).
The value of the upper critical field for each T is read
directly from the raw data as explained in Fig. 1. We are
left with three fit parameters M0, η, and α. Two of these
are shown in the table of Fig. 2. The inset in Fig. 3 shows
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that the T -dependence of M0 ∝ 1/λ2 is qualitatively con-
sistent with the behavior of the superfluid density ∝ λ−2.
The quality of the fits is good; hence, the empirical form
(4) can be used to represent the data reasonably accu-
rately.

Examining possible modifications of the London model
to account for the deviations of M(lnB) of Fig. (2) from
linear behavior, one should bear in mind the difference
between the roles of two fundamental lengths, λ and ξ,
within the London theory. The length λ enters Eq. (1)
which is the basis of the whole approach. On the other
hand, the length ξ is absent in the London equation
and enters the energy expression as an uncertain cutoff
used to mend the inherent shortcoming of the London
model. Therefore, considering possible modifications of
this model, one still has some freedom - however limited
- in working with ξ, unlike the case of λ.

Comparing the data of Fig (2) with predictions of the
standard London model one wonders why the model
which describes correctly the field of vortices away of
their cores, fails badly at low temperatures. From the
point of view of a consistent London description, the only
suspicious point in deriving the free energy (2) and the
corresponding magnetization (3) is the cutoff employed
which generates the term ln(Hc2/B).

B. London model modified to accommodate ξ(B)

Hence, we write the free energy in the form:

F̃ =
φ0B

32π2λ2
ln

eηH̃(B)
B

, H̃ =
φ0

2πξ2(B)
, (5)

where ξ(B) is the field dependent cutoff (the core size).
Clearly, ξ(Hc2) is the standard coherence length associ-
ated with Hc2, so that H̃(Hc2) = Hc2. Then, evaluating
M = −∂F̃/∂B, we obtain:

M = − φ0

32π2λ2

(
ln

ηH̃

B
+

B

H̃

dH̃

dB

)
. (6)

The idea of the following manipulation is to find a field
H̃ that generates the form (4), or in other words, that
represents the experimental data. After equating (6) and
(4), one can solve a linear differential equation for H̃(B)
with the boundary condition H̃(Hc2) = Hc2. The result
in terms of h̃ = H̃/Hc2 and b = B/Hc2 reads:

ln h̃ =
α

b
ln b +

(ln η + α)(1− b2)
2b

. (7)

This corresponds to the normalized cutoff distance (the
core radius)

ξ∗(B) =
ξ(B)
ξc2

= b−α/2b exp
(ln η + α)(b2 − 1)

4b
. (8)
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FIG. 3: (color online) ξ(B) extracted from the data of Fig. 2
for YNi2B2C with the help of Eq. (8). The upper curve is
for T = 2 K, the lowest is for 12 K. The inset shows M0(T )
extracted from the fits of Fig. 2.

It is readily shown that the slope of ξ∗(b) at Hc2 is de-
termined by the parameter η:

dξ∗

db

∣∣∣
b=1

=
1
2

ln η . (9)

Hence, when the field decreases from Hc2, ξ(B) decreases
for η > 1 and increases for η < 1.

Using Eq. (8), we can calculate the normalized cutoff
ξ∗(b) responsible for deviations of M(B, T ) from the stan-
dard London behavior for YNi2B2C shown in Fig. 2 since
we have η and α representing these data sets (note that
M0 does not enter Eq. (8)). The curves ξ∗(b) for T = 2,
5, 9, and 12 K calculated with Eq. (8) are shown in Fig. 3.

It is worth observing that ξ(B) so obtained is qualita-
tively similar to the B dependence of the core size seen in
µSR experiments.2 Moreover, it is argued in Ref. 5 that
the field dependence of ξ should weaken with increasing
temperature in accord with Fig. 3.

Another point to make is only a moderate variation of
ξ which is needed to account for strong deviations from
the linear M(lnB). For example, at 2 K, ξ changes only
by a factor of 2 over most of the mixed state field domain.
Since the cutoff enters the energy (5) under the log-sign,
it might be surprising that such a difference suffices to
cause a drastic deviation of the 2K curve in Fig. 2 from a
straight line. The puzzle is resolved if one observes that
the field dependence of ξ translates to non-logarithmic
corrections to the standard London magnetization, see
Eq. (6).

The same analysis has been applied to the magne-
tization data for a crystal of LuNi2B2C [whose crystal
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FIG. 4: (color online) (a) M(B) for LuNi2B2C for T=7,10
and 12 K. (b) ξ(B) corresponding to the graphs of the upper
panel.

structure and superconductive properties are similar to
YNi2B2C], yielding similar results as shown in Fig. 4.

C. Lu(Ni1−xCox)2B2C

As mentioned, Ref. 5 argues that the field depen-
dence of the core size is weakened by increasing tem-
perature and scattering. In order to study the scatter-
ing dependence of ξ(B) we turn to a series of crystals
Lu(Ni1−xCox)2B2C in which the mean-free path is pro-
gressively reduced by increasing the Co content.7

In the upper panel of Fig. 5, M(B) is shown for x = 0,
3, and 6% (for which Hc2 has been independently mea-
sured) at the same temperature of 2 K. The fit parameters
η and α are also shown and the calculated field dependent
core sizes are given in the lower panel.

We note that for 6% Co, the ratio of the zero-T co-
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FIG. 5: (color online) (a) M(B) for Lu(Ni1−xCox)2B2C with
x = 0, 3, and 6%. (b) ξ(B) corresponding to graphs of the
upper panel.

herence length to the mean-free path has been estimated
in Ref. 7 as exceeding 10, which places this sample close
to the dirty limit. The core size for this crystal is seen
to vary only by about 10%, which is in accord with the
theoretical finding that field dependence of ξ disappears
in the dirty limit.4,5

D. NbSe2

The superconducting anisotropy of this material is
stronger than in borocarbides discussed above. As is seen
in Fig. 6, deviations of M(ln B) from the standard Lon-
don linearity are profound along with the corresponding
field dependence of ξ.
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FIG. 6: (color online) (a) M(B) for NbSe2. (b) ξ(B) corre-
sponding to graphs of the upper panel.

E. MgB2

The upper panel of Fig. 7 shows M(lnB) in fields par-
allel to the c axis of a single crystal MgB2. One readily
sees a qualitative difference from the preceding examples:
the curvature of M(lnB) for T = 4.6K being negative in
low fields becomes positive in large fields. Still, we can
fit well the data for all T ’s to the form of Eq. (4) with
parameters η and α given in the table.

The most interesting feature is that the obtained values
of η exceed unity. According to Eq. (9) this means that
starting from Hc2, ξ decreases with decreasing field. This
is shown in the lower panel of Fig. 7. We attribute this
unusual behavior to the two-gap nature of this material:
the small gap on the π-sheet of the Fermi surface opens
up in decreasing fields thus causing a decrease of ξ.

If indeed the unusual behavior of ξ(B) for MgB2 is
due to suppression of the small gap in fields of few kG
for H||c, and if the suppression field is isotropic, then
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FIG. 7: (color online) (a) MgB2, T = 4.6, 15 and 25K.(b)
corresponding ξ(B).

by going to other field orientation away of the c axis,
we can push the effect of the small gap out of the high
field domain of our interest. To check this hypothesis we
acquired the data for the applied field at 45◦ to the c axis
where Hc2(0) is accessible with our equipment. Figure
8 shows the result similar to that for Y and Lu-based
borocarbides. This suggests that, e.g., for T = 10 K, in
the field domain examined (from Hc2 = 4.15T down to
about 0.4 T or b ≈ 0.1) the small gap is not yet fully
formed.

Of course, this interpretation is much too simple
because for other than H || c orientation the strong
anisotropy of ξ should be taken into account, the sub-
ject of our future work It should also be noted here that
the macroscopic phenomenology of magnetic properties
of MgB2 is still debated. Despite the two-band nature
of this material, within the London approach, we employ
one penetration depth λ and one cutoff length ξ when
describing the vortex lattice in reciprocal space. Judging
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FIG. 8: (color online) (a) Magnetization of the MgB2 crystal
in applied field at 45◦ to the c− axis. (b) corresponding co-
herence length. Note the difference in the behavior of ξ∗(b)
from the case of the field along c of Fig. 7.

by literature, this point of view is not universally shared
by all MgB2 community.

F. V3Si

Given the slope dHc2/dT = 19.4 T/K and Tc = 16.6 K,
it is likely that the low temperature upper critical field
of this material exceeds 20 T; no direct measurements of
Hc2 were conducted in this field range. One might treat
Hc2 as an extra fitting parameter to be extracted from
the data on M(B). However, the numerical procedure of
extracting both Hc2 and η from the magnetization data
is unstable because their product enters the formulas we
use. For this reason we consider here only M(B) for
T > 13K for which Hc2 was measured.

It is worth noting that Eq. (4) is good enough even for
a quite unusual shape of M(lnB) in this material: the
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FIG. 9: (color online) Magnetization of the V3Si single crystal
at T = 13, 14, 15 and 16K.

curvature of M(lnB) changes sign in all data we have
examined. With the help of Eq. (4) we readily find that
the inflection point is at bi =

√
α/(α + ln η). As is seen

from the table of Fig. 9, for all curves given, α ¿ ln η
which leads to

ln bi ≈ 1
2

(
1 +

α

ln η

)
. (10)

Hence the inflection points of M(ln b) are approx-
imately in the same place, ln bi ≈ 0.5, for all
temperatures.16 Therefore, the curves M(lnB) are
concave for b < bi ≈ 0.16, i.e., at fields hardly in the
domain of applicability of our high-field model. On
the other side of the inflection point where the curves
M(ln B) are convex, we may deal with the Abrikosov
domain where M is linear in Hc2 − B; it is easy to see
then that M(lnB) should be convex.17 Application of
the London approach in this domain cannot be justified.
Therefore, there is no point in trying to extract ξ(B)
from the data on V3Si (formally, since all η’s in the table
of Fig. 9 exceed unity, this extraction would have given
ξ(B) decreasing with decreasing field which would have
contradicted the µSR data of Ref. 18).

IV. DISCUSSION

The main point of this work is to argue that the
field dependence of the core size is a generic low-
temperature property of all sufficiently clean supercon-
ductors. Moreover, incorporating this dependence in the
London approach broadens considerably its applicabil-
ity for describing macroscopic reversible magnetic prop-
erties. Still, the empirical approach adopted here lacks
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microscopic justification. If proven correct, the modified
London scheme calls for revisiting many results obtained
within the standard London model in which the field in-
dependent core size or the cutoff are involved. Field de-
pendencies of the flux-flow resistivity, of the specific heat
in the mixed state, or the core pinning are some exam-
ples.

One can foresee a number of difficulties in trying to
develop such a justification. The cutoff size we extract
from M(B) data is not necessarily the same as the core
size defined as being proportional to the slope of the or-
der parameter at the vortex axis: approaching the core
from the outside to determine the cutoff we may have
a different result than when examining the core struc-
ture starting from the core center. Having this in mind,
it is not surprising that the microscopic calculations of
ρc ∝ (d∆/dr|r→0)−1 in Ref. 6 do not agree in detail
with our empirical results (to our knowledge, this is the
only calculation of this sort that has been tried to date).
Fig. 10 shows the output of this calculation normalized in
the manner of this paper for a model isotropic material at
T = 0.1 Tc and for a few values of the scattering param-
eter ξ0/` (ξ0 = ~vF /π∆(0) is the zero-T BCS coherence
length and ` is the mean-free path for the non-magnetic
scattering). We note that while the curves generated are
mostly qualitatively similar to what we extract from the
magnetization data, this calculation does not confirm our
assertion about weakening of the field dependence of the
core size with increasing scattering.

0.0 0.2 0.4 0.6 0.8 1.0

1.0

1.5

2.0

 0.1
 0.5
 1
 2
 4
 6/

c2

B/Hc2

0/lT/Tc=0.1

FIG. 10: (color online) The field dependence of ξ calculated
microscopically for T/Tc = 0.1 and for a few scattering pa-
rameters ξ0/` where ξ0 is zero-T BCS coherence length and `
is the mean-free path for scattering on non-magnetic impuri-
ties.

A different approach to evaluation of the core size is
chosen in Ref. 5: it is argued on physical grounds that
since ∆ → 0 at the vortex center and the field is practi-

cally uniform within the core for κ À 1, one can use the
Helfand-Werthamer19 linearization technique employed
for calculation of Hc2 also for the core size in the high-
field mixed state. Within this approach, the order pa-
rameter near the vortex center satisfies a linear equation
−ξ2Π2∆ = ∆, where Π = ∇ + 2πA/φ0 and ξ is found
solving the basic BCS self-consistency equation. This
produces ξ(T, `;B) in qualitative agreement with what
we extract from the magnetization data in this work
(for all cases other than V3Si and MgB2 in field along
the c axis); in particular, the analytical field dependence
of ξ obtained in this way disappears when T → Tc or
`/ξ0 → 0.

In our view, the question still remains which of these
two theoretical approaches, Ref. 6 or Ref. 5, describes bet-
ter various data on ξ(B). An important role in resolving
the question belongs to experimental studies of how the
field dependence of the core size affects other physical
properties of the mixed state.

A. Flux-flow resistivity

As an example of such a cross-examination we took
data on the flux-flow resistivity ρf from measurements
of the microwave surface impedance of YNi2B2C.20 The
data show large deviations of the measured ρf from the
Bardeen-Stephen linear field dependence, ρf = ρnB/Hc2.
This formula is obtained assuming a field independent
core size ξ = ξc2 =

√
φ0/2πHc2. Clearly, if ξ does depend

on the field, one has:

ρf

ρn
= B

2πξ2(B)
φ0

=
B

Hc2

ξ2(B)
ξ2
c2

= b ξ∗2(b) . (11)

Hence, for each data set ρf (B), we can extract

ξ(B)
ξc2

=

√
ρf (B)
ρn b

; (12)

in other words, we can delegate deviations from ρf ∝ B
to the field dependence of ξ and see whether or not the
obtained ξ(B) agrees with that extracted from magneti-
zation data.

Utilising the flux-flow resistivity data of Fig. 3 of
Ref. 20 and applying Eq. (12), we obtain the result shown
in the panel (a) of Fig. 11. Comparing it with our Fig. 3
for the same material, we obtain reasonable agreement,
notwithstanding the usage of different samples in these
two experiments.

As another example, two selections of data for
Y(Ni1−xPtx)2B2C from Fig. 3 of Ref. 21 were used to
calculate ξ(B)/ξc2, as shown Fig. 11(b). We see that
in addition to the expected decrease with field, ξ(B) is
suppressed by increasing scattering (i.e., increasing im-
purity content of Pt) again in accord with the examples
discussed above.

Panel (c) of Fig. 11 shows the result of the same ex-
ercise with a d-wave material (an overdoped crystal of
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Bi-2201).22 This example supports the idea that the field
dependence of the London cutoff is a generic feature of
type-II superconductors with no direct relation to the
order parameter symmetry.

The last panel of Fig. 11 presents the cutoff ξ(b)/ξc2 for
two field orientations of MgB2 extracted from the flux-
flow resistivity data of Ref. 23, again using Eq. (12). For
the field along ab, both M(B) and ρf (B) data yield qual-
itatively similar results. This, however, is not the case
for the field along c as evident by comparing Figs. 7 and
11(d). Thus it appears that for the two-gap MgB2 with
its greater complexity, the simple scheme of incorporat-
ing a field-dependent cutoff to the London model does
not work for all field orientations.

1.0

1.2

1.4
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1.8

0.0 0.2 0.4 0.6 0.8
1.0

1.2

1.4

1.6

0.2 0.4 0.6 0.8 1.0

T = 1.5 K

Y(Ni1-xPtx)2B2C
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x=0.2

x=0
T = 0.5 K

(c)

T = 5 K

Bi:2201

(d)

B || c

B || ab

T = 2.3 K

MgB2

B/H
c2

FIG. 11: (color online) ξ(b)/ξc2 versus b = B/Hc2 for
Y(Ni1−xPtx)2B2C with x = 0 and 0.2 extracted from the
flux-flow resistivity data of Ref. 21 as explained in the text.

B. On nonlocality

Deviations in M(lnB) from the standard London lin-
ear behavior have been thought to come from the effects
of the nonlocal relation between current and the vector
potential inherent for superconductors.14 The nonlocal
corrections to London theory turned out to be an effec-
tive tool in describing evolution and transitions in vortex
lattice structures.26 However, it is difficult at this stage
to sort out what part of the deviations of M from linear-
in-ln B behavior arises solely from the core-size field de-
pendence and what part should be relegated to the nonlo-
cality. In particular, the difficulty comes from analogous
weakening of the two effects with increasing tempera-
ture and scattering strength. Looking back to the overall
satisfactory data analysis of M(lnB) for Lu(Ni1−xCox)2
B2C of Ref. 25 based on nonlocal effects, we note that the
analysis produced an excessively rapid reduction of the

”nonlocality range” with temperature for samples with
elevated impurity content. We have to conclude that
more high precision experimental results are needed be-
fore a conclusive judgement is made on the relative im-
portance of contributions to M(B) due to the nonlocality
and to the field dependence of the core size.

C. Why λ(B) should be used with caution within
London theory

As mentioned above, the basic London equation (1)
along with the energy expression (2) for intermediate
fields (or Eq. (5) with an unspecified cutoff) imply that
the London penetration depth λ is a temperature depen-
dent constant in a homogeneous material. Assuming a
field dependent λ would have changed the London equa-
tion (1) per se: the quantity λ2(h) cannot be taken out of
differentiation operators. As a result, the Fourier com-
ponents of the solution h(k) for a single vortex would
have been different from φ0/(1 + λ2k2) and the energy
(2) would have been different as well. Therefore, unlike
the case of the cutoff ξ, relaxing the requirement of a
constant λ causes basic changes in the London approach
and therefore should not be taken lightly. It also worth
recalling that a constant λ is derived from the micro-
scopic BSC theory (as k → 0 limit of the BCS kernel in
the nonlocal connection between the persistent current
and the vector potential). To our knowledge, there is no
microscopic justification for a field-dependent λ (in non-
magnetic superconductors). In other words, the London
theory is rigid with respect to a constancy of λ, unlike
the case of ξ.

Yet, quite often, analyzing data with the help of the
London model (i.e., starting with a constant λ) it is
concluded that λ should be field dependent. Numerous
examples are found in the literature on µSR (see, e.g.,
Ref. 2) and in many recent publications on MgB2.24,27–29
An “operational” justification implied for this apparent
contradiction usually goes like this: of course, the field
distribution for a single vortex is described by Eq. (1)
with a constant λ. However, in the mixed state the aver-
age order parameter is suppressed by overlapping vortex
fields, and therefore, the “macroscopic” Λ ( 6= to λ cal-
culated for H → 0) should enter the free energy Eq. (2).
This macroscopic parameter may depend on the average
magnetic field B.

The inconsistency of such an argument is exposed if
one considers the clean limit at zero temperature. In
this case the London λ does not depend on the order
parameter (in fact, it depends only on the total electron
density), so that the mixed-state order parameter sup-
pression cannot be reffered to as a general justification
for employing Λ(B).
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D. On the superfluid density

The quantity λ2(0)/λ2(T ) is often taken as a measure
of the superfluid density ns. This assignment has unam-
biguous justification only for isotropic superconductors
(see, e.g., Ref. 30) and when λ(T ) is defined as the pene-
tration depth of a small magnetic field (strictly speaking
in the limit H → 0). One of the attractive features of the
standard London theory is that one can extract 1/λ2(T )
directly from the magnetization (3) by measuring the
constant slope dM/d(lnB) for each temperature. This
way of determining the superfluid density ns rests, there-
fore, upon whether or not the standard London model
for M is valid. As we have seen in a number of examples
above, this is quite often not the case.

Perhaps the best example of the futility of extracting
ns from magnetization data is provided by the data for
V3Si. As is seen in Fig. 9, e.g., for T = 14 K, the slope
dM/d(lnB) decreases with the field increasing up to ∼
1 T, but it grows with further field increase toward Hc2.
If one takes literally the proportionality between ns and
the slope dM/d(lnB), one should conclude that the field
suppresses the “superfluid density” as long as B is under
≈ 1T but for B > 1T, ns is enhanced by increasing field.

Hence, extracting any quantitative information about
the superfluid density or the penetration depth from the
magnetization data with the help of the standard London
model should be taken “with a grain of salt” at best even
for such “simple” materials as V3Si, not to speak about
MgB2 in which the different field behavior of the two gaps
further complicates the matter.24,28,29

To summarize, the field dependence of the core
size ξ(B) has been incorporated in the London model
to describe intermediate field reversible magnetization
M(B, T ) for materials with large κ. The dependence
ξ(B) is directly related to deviations in M(ln B) from lin-
ear behavior prescribed by the standard London model.
A method to extract ξ(B) from the magnetization data
is proposed. For most materials examined, ξ(B) so ob-
tained decreases with increasing field; the dependence
becomes weaker with increasing temperature or with
strengthening the non-magnetic scattering, in qualitative
agreement with theoretical predictions and with existing
µSR, SANS, and flux-flow resistivity data. The method,
however, fails when applied to MgB2 and - surprisingly -
to V3Si, the subject for a separate discussion.
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6 P. Miranović, M. Ichioka, and K. Machida, Phys. Rev. B

70, 104510 (2004).
7 K.O. Cheon, I.R. Fisher, V.G. Kogan,P.C. Canfield, P. Mi-

ranovic and P.L. Gammel, and , Phys. Rev. B 58, 6463
(1998).

8 J. Karpinski, M. Angst, J. Jun, S.M. Kazakov, R. Puz-
niak, A. Wisniewski, J. Roos, H. Keller, A. Perucchi, L.
Degiorgi, M.R. Eskildsen, P. Bordet, L. Vinnikov, and A.
Mironov, Supercond. Sci. Technol. 16, 221-230 (2003).

9 M. Tinkham, Introduction to Superconductivity, New York,
McGraw-Hill, 1996; section 5.3.2.

10 Eq. (4) is in fact a general expansion of a function singular
as b = B/Hc2 → 0: c1/b + c2 ln b + c3 + c4b + ...

11 E.H. Brandt, J. Low Temp. Phys 26, 709 (1977).
12 Z. Hao and J.R. Clem, M.W. McElfresh, L. Civale, A.P.

Malozemoff, and F. Holtzberg, Phys. Rev. B 43, 2844
(1991).

13 A.E. Koshelev, Phys. Rev. B 50, 506 (1994).
14 V.G. Kogan, A. Gurevich, J.H.Cho, D.C.Johnston, Ming

Xu, J. R. Thompson, and A. Martynovich, Phys. Rev. B,
54, 12386 (1996).

15 D.K. Christen, H.R. Kerchner, S.T. Secula, and Y.K.
Chang, Proc. Int. Conf. on Low Temp. Phys., LT-17, Karl-
sruhe 1984, p. 1035.

16 This suggest a possibility of a certain scaling procedure as
a result of which all M(ln b) of Fig. 9 nearly collapse to a
single curve. We will not dwell on this matter, since the
physical meaning of such a scaling is still unclear.

17 One can calculate the linear slope dM/dB|B→Hc2 using
Eq. (4) to obtain (1 + 2α + ln η)/16πκ2. The Abrikosov’s
slope is ≈ 1/8πκ2βA with βA = 1.16 for a triangular lat-
tice at T → Tc. It is now easy to see that Eq. (4) with
parameters η and α from the table in Fig. 9 for T = 16K
(which is close to Tc ≈ 16.8K) gives the slope of the same
order as that calculated according to Arikosov. This sug-
gests that in V3Si the Abrikosov domain might be very
broad. We note that if ρc would behave as ≈ ξc2/

√
b in a

broad domain under Hc2, the intervortex distance would
have been on the order of ρc; in other words, one would
expect Abrikosov’s linear M(B) in this domain. This spec-



11

ulation is worth of experimental examination.
18 J.E. Sonier, F.D. Callaghan, R.I. Miller, E. Boaknin, L.

Taillefer, R.F. Kiefl, J.H. Brewer, K.F. Poon, and J.D.
Brewer, Phys. Rev. Lett. 93, 017002 (2004).

19 E.H. Helfand, N.R. Werthamer, Phys. Rev. 147, 288
(1966).

20 K. Izawa, A. Shibata, Yuji Matsuda, Y. Kato, H. Takeya,
K. Hirata, C.J. van der Beek, and M. Konczykowski, Phys.
Rev. Lett. 86, 1327 (2001).

21 K. Takaki, A. Koizumi, T. Hanaguri, M. Nohara, H. Tak-
agi, K. Kitazawa, Y. Kato, Y. Tsuchiya, H. Kitano, and
A. Maeda, Phys. Rev. B , 66, 184511 (2002).

22 Y. Matsuda, A. Shibata, K. Izawa, H. Ikuta, M. Hasegawa,
Y. Kato, Phys. Rev. B 66, 014527 (2002).

23 A. Shibata, M. Matsumoto, K. Izawa, Y. Matsuda, S. Lee
and S. Tajima, Phys. Rev. B 68, 060501(R) (2003).

24 M. Angst, D. Di Castro, D.G. Eshchenko, R. Khasanov, S.
Kohout, I.M. Savic, A. Shengelaya, S.L. Budko, P.C. Can-

field, J. Jun, J. Karpinski, S.M. Kazakov, R.A. Ribeiro,
and H. Keller, Phys. Rev. B 70, 224513 (2004).

25 V.G. Kogan, S.L. Bud’ko, I.R.Fisher, and P.C. Canfield,
Phys. Rev. B, 62, 9077 (2000).

26 V.G. Kogan, P. Miranovic, and D.McK. Paul, Series on
Directions in Condensed Matter Physics ; ed. C. A. R. Sa
de Melo, 13, 127, World Scientific, Singapore (1998).

27 R. Cubitt, M.R. Eskildsen, C.D. Dewhurst, J. Jun, S.M.
Kazakov, and J. Karpinski, Phys. Rev. Lett. 91, 047002
(2003).

28 M. Eisterer, M. Zehetmayer, H.W. Weber and J. Karpin-
ski, Phys. Rev. B 72, 134525 (2005).

29 T. Klein, L. Lyard, J. Marcus, Z. Holanova, and C. Marce-
nat, Phys. Rev. B 73, 184513 (2006).

30 A.A. Abrikosov, Fundamentals of the Theory of Metals,
North-Holland, New York, 1988.


